Inorganica Chimica Acta, 52 (1981) 231-243

MARINA BIAGINI CINGI, ANNA MARIA MANOTTI LANFREDI, ANTONIO TIRIPICCHIO *Istituto di Chimica Generale ed Inorganica, Universitd di Parma, Centro di Studio per la Strutturistica Diffrattometrica de1*

Istituto di Chimica Generale ed Inorganica, U

GIULIANO BANDOLI and DORE AUGUST0 CLEMENTE *Istituto di Chimica Generale ed Inorganica, Universitd di Padova, Via Loredan 4, 35100 Padua, Italy*

Received March 31,198l

The crystal structures of (C,H,,N402)2Mg- (oH br*3 (I)* and *CH*₂ (CBH₁O₁₄O₂/₂M₂ (OH₂) b_{*}^{*II*} (*I*) and *I*² *II*</sub> (*OH*₂) b_{*}^{*II*} $(OH_2)_6 Br_2$ (*I*) and $(C_8H_{10}N_4O_2)_2Mn(OH_2)_6I \cdot I_3$ *(II)* have been determined by X-ray diffraction *methods: crystals of I are triclinic, space group* $P\overline{I}$, with $Z = 1$, in a unit cell of dimensions: $a = 9.620(7)$, $b = 10.779(8)$, $c = 7.645(6)$ Å, $\alpha = 107.03(7)$, $\beta =$ 108.88(7), $\gamma = 72.71(8)^{\circ}$; crystals of II are mono*clinic, space group* $P2_1/n$ *, with* $Z = 4$ *, in a unit cell of dimensions a = 12.406(8), b = 29.652(12), c =* $\frac{1}{2}$ *9.419(6) 4 january 3 = 12.400(6)*, 0 = 29.052(12), 0 = 0.419(6) $I = \frac{I}{I}$ have been solved *from diffractories of I and* by $I = \frac{I}{I}$ *II* have been solved from diffractometer data by Patterson and Fourier methods and refined by full*matrix least-squares to* $R = 0.046$ for I and 0.090 for *II. Both compounds contain octahedral hexaaquametal(II)* cations, uncoordinated caffeine molecules and bromide anions in I and trijodide and iodide anions in II, held together by a network of hydrogen bonds. The triiodide anions are unsymmetrical $I(1) - I(2) = 2.89$, $I(2) - I(3) = 2.95$ Å, $I(1) - I(2) - I(4)$ $I(3) = 178^\circ$, arranged in linear systems with a weak *head-to-tail'* interaction, the distance being of 3.62 Å.

Introduction

Influence of caffeine (cf) on both animal and in nuence of callente (cl) on both aminal and vegetable cells behaviour in normal and abnormal situation is under continuous investigation. Generally cf is dissolved in aqueous solutions of sodium aromatic organic salts, frequently benzoate $[1]$.

It is known that solubility of cf in water is increased on addition of metal salts. The preparation of some complexes in the solid state $[2]$ or in aqueous solutions [3] has been reported. With sodium benzoate cf can also be dosed complexometrically $[4]$. Recently we prepared some cf copper (II) complexes in the course of a research program on the ligand
behaviour of purine derivatives [5]. cf coordinates

to the metal through the $\mathcal{L}(\mathcal{L})$ atom in $\mathcal{L}(\mathcal{L})$ to the metal through the N(9) atom in $\text{[CuNO}_3\text{-}\text{[cf)}\text{H}_2\text{-}O_3\text{-}N\text{-}O_3$ [6] and in $\text{[CuCl}_2\text{(cf)}\text{H}_2\text{-}O_3\text{-}O_3\text{-}O_4$

as shown by structural X-ray determinations. cf as shown by structural X-ray determinations, ci shows a considerable bent for coordinating to copper giving stable complexes. However, it does not seem to coordinate either to other transition metals, or to typical metals. Nevertheless, cf forms stable crystal compounds with some salts of divalent metals; examples are the two structures here reported, $2cf$ ⁻ [Mg(OH₂)₆] Br₂ (I) and $2cf$ ⁻ [Mn(OH₂)₆] I· I₃ (II).

Experimental

By slow evaporation at room temperature of by slow evaporation at room temperature of aqueous solutions containing $MgBr₂$ or $MnI₂$ in excess and caffeine, colourless crystals of the compound $(C_8 H_{10} N_4 O_2)$ ₂Mg(OH₂)₆Br₂ (I) and of the compound $(C_8 H_{10} N_4 O_2)$ ₂(OH₂)₈L₂ were $(C_8H_{10}N_4O_2)_2(OH_2)_8I_2$ obtained, respectively. From the mother liquors (which in the air became brown) of the latter compound at pH 4, small green-brown crystals of the
compound $(C_8H_{10}N_4O_2)_2 \cdot Mn(OH_2)_6I \cdot I_3$ (II) $(C_8H_{10}N_4O_2)_2 \cdot Mn(OH_2)_6I \cdot I_3$ separated. Crystals having the same stoichiometry were always obtained from $Col₂$ and $Nil₂$ with caffeine solutions: $(C_8H_{10}N_4O_2)_2Co(OH_2)_6I\cdot I_3$ (III). and $(C_8H_{10}N_4O_2)_2Ni(OH_2)_6I_3$ (IV).

Anal. Calcd. for I, $C_{16}H_{32}Br_2MgN_8O_{10}$: C, 28.24; H, 4.74; Br, 23.48; Mg, 3.57; N, 16.46; Found: C, 27.9; H, 4.8; Br, 23.4; Mg, 3.5; N, 16.3. D_m =

1.62 g cm⁻³. Calcd for II, $C_{16}H_{32}I_4MnN_8O_{10}$: C, 18.15; H, 3.05; I, 47.93; Mn, 5.19; N, 10.58. Found: C, 17.7; H, 2.9; I, 47.8; Mn, 5.2; N, 10.5. $D_m = 2.13$ g cm⁻³. Calcd for III, C₁₆ H₃₂ CoI₄ N₈ O₁₀: C, 18.08; H, 3.04; Co, 5.54; I, 47.75; N, 10.54. Found: C, 18.2; H, 3.0; Co, 5.5; 1, 47.7, N, 10.5. $D_m = 2.08$ g cm⁻³.
Calcd. for IV, C₁₆H₃₂I₄N₈NiO₁₀: C, 18.08; H, 3.03; I, 47.76; N, 10.54; Ni, 5.52. Found: C, 18.0; H, 3.0; I, 47.7; N, 10.1; Ni, 5.5. $D_m = 2.15$ g cm⁻³.

C, H and N were determined by a C. Erba Elemental Analyzer Mod. 1106, metal by a Perkin-Elmer Atomic Absorption Spectrophotometer Mod. 303, halogen as silver halide. Measured density was determined by flotation.

The crystals of II, III and IV are insulating, their resistivity being between 10^{10} and 10^{13} Ω cm; they are slightly photoconducting.

Crystal Data

Compound I, $C_{16}H_{32}Br_2MgN_8O_{10}$, $M = 680.6$. Triclinic, $a = 9.620(7)$, $b = 10.779(8)$, $c = 7.645(6)$ A, α = 107.03(7), β = 108.88(7), γ = 72.71(8)°, $U =$
699(1) A³, Z = 1, D_e = 1.617 g cm⁻³, F(000) = 346. Cu-K α radiation, $\overline{\lambda}$ = 1.54178 Å; μ (CuK α) = 44.69 cm^{-1} . Space group $P\overline{1}$ from structure determination.

Compound II, $C_{16}H_{32}I_4MnN_8O_{10}$, $M = 1059.0$. Monoclinic, $a = 12.406(8)$, $b = 29.652(12)$, $c = 9.419(6)$ Å, $\beta = 108.39(7)^{\circ}$, $U = 3288(4)$ Å³, $Z =$ 4, D_c = 2.14 g cm⁻³, $F(000)$ = 2004. Mo-K α radiation, $\bar{\lambda}$ = 0.71069 Å; μ (Mo-K α) = 41.56 cm⁻¹. Space group $P2₁/n$ from systematic absences.

Cell parameters were first determined from photographs and then refined from diffractometer data.

Intensity Data

Intensities of I and II were collected on Siemens AED single-crystal diffractometers of the Centro di Studio per la Strutturistica Diffrattometrica dell' Università di Parma and of Istituto di Chimica Generale dell'Università di Padova respectively, using Cu-K α radiation for I and Mo-K α radiation for II, with the $\omega - 2\theta$ scan technique. All the reflections in the range of $6 < 2\theta < 140^{\circ}$ for I and $3 \le 2\theta \le$ 40° for II were collected, the intensities of reflections of II decreasing very rapidly with the diffraction angle. Of 2624 (I) and 3052 (II) independent measured reflections, 2440 (I) and 1068 (II), having $I > 2\sigma(I)$ and $I > 3\sigma(I)$ respectively, were considered observed and used in the analyses. The large portion (65%) of very weak reflections of II may be attributed to the small crystal used, to large thermal motion of the heavy atoms and to some possible disorder in the lattice of the triiodide sites. The intensity data were corrected for Lorentz and polarization factors, but no absorption correction was applied.

TABLE I. Fractional Atomic Coordinates of the Non-hydrogen Atoms $(\times 10^4)$ for I with e.s.d.s in Parentheses.

Structure Determination and Refinement

The structures were solved by Patterson and Fourier methods and the refinements were carried out by means of SHELX [8] for I and X-RAY system [9] for II. Some cycles of full-matrix least-squares with anisotropic thermal parameters for the non-hydrogen atoms were computed for I: the subsequent $|\Delta F|$ maps revealed the positions of all the hydrogen atoms which were introduced in the final structure factor calculations but not refined. As for the compound II the number of observations was inadequate to give a good observation-to-parameter ratio, only thermal parameters of the iodine and manganese atoms were allowed to vary anisotropically. At the termination of the refinement unexplained electron density of up to 1.5 eA^{-3} was observed, mainly around the heavy atoms, which is assumed to have arisen from a great variety of errors. Unit weights were used at each stage of the refinement of both compounds, by analyzing the variations of $|\Delta F|$ as a function of $|F_{\alpha}|$. The final R was 0.046 for I and 0.090 for II (observed reflections only). Final atomic coordinates for I and II are given in Tables I, II and III respectively. Thermal parameters of the atoms and a list of calculated and observed structure factors for I and II are available from the authors on request. The accuracy of the atomic coordinates in the organic part of II is not high, as the major part of the intensity of most reflections is determined by the contribution of iodine and manganese atoms. Inspection of the Tables of positional and thermal parameters of II shows some unrealistic thermal parameters and

Structure of Caffeine Complexes

 x/a

7925

H73

Atoms $(\times 10^4)$ for I.

Hl 759 2325 **6089** H1 759 2325 6089 H2 585 1908 4273 H₃ 1376 420 8683 $H4$ 1964 -790 7841 $H5$ 2391 -1555 3596 H6 2167 -301 3156 H8 5718 7241 5326 H11 4111 1554 -2684 $H12$ 5195 1218 -753 H13 3554 1205 -1126 H31 1443 7004 -220 H32 635 6405 1066 $H33$ 585 5844 -888 H71 7829 3951 5125 H72 8430 4777 3899

 y/b

5419

xloop well you want to control you want to be about the state of

I $\overline{1}$

ľ

 ϵ ϵ

 $\overline{\mathbf{C}}$ ľ

ı

 ϵ ľ

 z/c

6050

nico Interuniversitario dell'Italia-Nord Orientale, Casalecchio (Bologna).

Discussion

The crystal structures of I and II, depicted in Fig. 1 and Fig. 2, respectively, consist of octahedral hexaaquametal(II) cations, of uncoordinated cf molecules and of bromide counter-ions in I and of triiodide and iodide anions in II. The $Mg-OH₂$ $(2.07-2.08 \text{ Å})$ (Table IV) and the Mn-OH₂ distances $(2.16-2.22 \text{ Å})$ (Table V) show the same pattern as in the other previously reported $Mg-O$ and $Mn-O$ bond lengths respectively, in particular in magnesium

Fig. 1. Projection along c of the structure of compound I.

Bı Ω 0_w

> ∫o⊷3 $06₀$

> > C R

 $\sqrt{25}$ \circ

∩n∍

high estimated standard deviations. This is probably due to a lack of crystal quality and, as a result of the long b axis, complete resolution of reflection spots was not always possible. However, the general trends observed in the structure are consistent and appear reliable. All the calculations were carried out on a CYBER 76 computer of Centro di Calcolo Elettro-

TABLE II. Fractional Atomic Coordinates of the Hydrogen TABLE III. Fractional Atomic Coordinates of the Nonhydrogen Atoms $(x10⁴)$ for II with e.s.d.s in Parentheses.

ammonium sulfate hexahydrate [lo] and in manga- two unequal I-I distances have been found. The disnese(II) ammonium sulfate hexahydrate [11], two tance between triiodide and iodide anions is ca. 1/4 b, members of the isomorphous series of Tutton's salts. The triiodide anion is unsymmetrical and its dimen- $10 \text{ns } [1(1)-1(2)] = 2.89, 1(2)-1(3) = 2.95 \text{ A}, 1(1) I(2) - I(3) = 178^{\circ}$ are well within the range normally found for this anion $[12, 13]$. When no crystallo-
graphic symmetry is imposed on the anion, invariably as discrete anions.

mmonium sulfate hexahydrate [10] and in manga **two unequal I–I** distances have been found. The dislonger than corresponding van der Waals contact. The $\overline{I_3}$ ions are arranged in linear systems parallel to the c axis (Fig. 3); moreover, the 'head-to-tail' $I(3) \cdots$ axis (Fig. 3); moreover, the nead-to-tail $1(3)$... (1) distance of 3.02 A, represents an interaction

TABLE V. Bond Distances (A) and Angles (°) in II.

a) Selected Bond distances (A) and angles $(°)$			
$I(1) - I(2)$	2.89(1)	$Mn-O(12)$	2.16(5)
$I(2)-I(3)$	2.95(1)	$Mn-O(13)$	2.17(4)
$Mn-O(10)$	2.20(5)	$Mn-O(14)$	2.15(3)
$Mn-O(11)$	2.17(4)	$Mn-O(15)$	2,22(4)
$I(1) - I(2) - I(3)$	178.4(3)	$O(13) - Mn - O(10)$	89(2)
$O(10) - Mn - O(11)$	88(2)	$O(14) - Mn - O(15)$	173(2)
$O(11) - Mn - O(12)$	96(2)	$O(10)$ -Mn- $O(12)$	176(2)
$O(12) - Mn - O(13)$	86(2)	$O(11)$ -Mn- $O(13)$	177(2)
b) Relevant intermolecular distances (A)			
$O(11) - I(3^1)$	3.53(4)	$O(11) - O(21)$	2.83(6)
$O(14) - I(4)$	3.51(3)	$O(12) - N(9111)$	2.79(7)
$O(13) - I(4^{11})$ $O(13) - I(4^{111})$	3.45(4)	$O(12)-O(61^V)$	2.51(6)
	3.58(4)	$O(14) - N(9)$	2.85(7)
$O(10) - O(6^{iv})$	2.70(7)	$O(15) - O(2^{VI})$	2.75(7)
Asymetric units:			
\mathbf{i} $\frac{1}{2} + x$, $\frac{1}{2} - y$, $-\frac{1}{2} + z$		iv $1 + x, y, z$	
ii $x, y, 1 + z$		$-\frac{1}{2}$ + x, $\frac{1}{2}$ - y, $\frac{1}{2}$ + z v	
iii $1-x, 1-y, 1-z$		vi $1 + x, y, 1 + z$	

Fig. 2. Projection along c of the structure of compound II.

Fig. 3. Projection along a of II showing the linear arrangements of the I_3 anions. The caffeine molecules are omitted for clarity.

In both compounds the geometry of the cf units is in good agreement with that found in other cf compounds even though the high e.s.d.s of the light atoms of II do not allow an accurate comparison. As observed in other xanthine derivatives, the purine moiety is not strictly planar (the maximum deviation being of 0.02 in I and of 0.07 and 0.11 Å respectively for the two crystallographically independent cf molecules in II); the dihedral angles between the mean planes through the pyrimidine and imidazole rings of the cf units are of 1.6° in I and 4.4 and 3.8° in II. In this last compound the $I(1) - I(2) - I(3)$ best line makes angles of 82.2 and 89.2 $^{\circ}$ with the normals to mean planes passing through the nine-atom framework of the two independent of molecules.

In I (Fig. 1) the cf molecules are arranged, through the symmetry centers at $\frac{1}{2}$ $\frac{1}{2}$ 0 and $\frac{1}{2}$ $\frac{1}{2}$, parallel to each other and in an infinite stack running along c with distances between successive purine moieties of 3.35 and 3.37 Å, alternately. In II (Fig. 2) half of the cf molecules arranged in pairs through the symmetry centres at $y = 0$ and $\frac{1}{2}$ (with interplanar distance of 3.38 Å) form double layers parallel to (010) . The other cf molecules, having the barycentres at $y \approx 1/4$ and 3/4, are disposed in a zig-zag way forming layers, always parallel to (010). The $\overline{I_3}$ ions interpose between different layers at $y \approx 1/6$, $1/3$, $2/3$ and 5/6, while the $Mn(OH_2)_6^{2+}$ and I^- ions interpose at $y \approx 1/12$, $5/12$, $7/12$ and $11/12$.

In I (Table IV) the water molecules form O_w - $H \cdot \cdot \cdot N$, $O_w - H \cdot \cdot \cdot O_v - H \cdot \cdot \cdot Br$ hydrogen bonds involving the imidazole nitrogen $N(9)$, the exocyclic pyrimidine oxygens $O(2)$ and $O(6)$, and the bromide anions. The intermolecular distances reported in Table V suggest also that in I1 the packing is determined by intermolecular $O_w-H \cdots N$, $O_w-H \cdots O$ and O_w -H \cdots I hydrogen bonds, so that in both structures all the water molecules are involved in a hydrogen bond network with all the acceptor sites of the cf molecule. In I there also is a $C-H \cdots Br$ interaction involving the hydrogen at $C(8)$ of the cf molecule [H(8) \cdots Br (1 – x, 1 – y, 1 – z) = 2.75 Å] which seems to play a significant role in determining the packing. There are numerous examples in the recent literature showing the acidic nature of this proton generally found participating in hydrogen bonds with carbonyl oxygens. In the structure of I, the $H \cdot \cdot \cdot B$ distance (much less than the sum of the van der Waals radii (3.15 Å) and the geometry of the C-H $\cdot \cdot$ Br interaction [C(8)-H(8)-Br (1- x, 1y, $1 - z$) = 157°] suggest that attractive H \cdots Br forces are present, appreciably stronger than the usual van der Waals effects.

For II we can add that the polyiodide salts may be classified into four categories: (i) large-cation polyiodides; (ii) neutral organic alkali-metal triiodides; (iii) protonated organic heterocycles with polyiodides and (iv) radical-cation polyiodides $[13]$. The true identity of II has been revealed by the structural characterization, which established the compound as a 2:1 crystal complex of cf and $\left[\text{Mn}(\text{OH}_2)_6\right]^{2+}$ $\left[\frac{1}{3}\cdot\right]$. Thus the compound is of particular interest as it does not fall into any of the previous four categories and represents the first example of a polyiodide salt containing an unprotonated organic heterocycle and an aqua $3d$ transition metal complex as the cation. Moreover, together with KI· KI_3 ⁻6(CH₃CONHCH₃) [14], it is, to date, the only example of a structure with both I_3^- and I^- ions present.

References

- 1 B. L. Tilford, *U.S.*, 3.919.431, 11 Nov. 1975.
- 2 F. Calzolari, Gazz. Chim. It., 42, II, 20 (1912).
- <u>2011</u> M. Tatsuzawa, M. Ishibashi and S. Nakayama, *Eisei Shikenjo Hokoku, 86, 12* (1968).
- M. Biagini Cingi, R. Borromei and L. Oleari, J. *Chem.*
- *Sot. Dalton, 2276* (1977). Soc. Dalton, 2276 (1977).
- 6 M. Biagini Cingi, A. Chiesi Villa, A. Gaetani Manfredotti and C. Guastini, Cryst. Struct. Comm., 1, 363 (1972).
- G. Bandoli, M. Biagini Cingi, D. A. Clemente and G. Rizzardi, *Inorg. Chim. Acta*, 20, 71 (1976).

 $\bar{\beta}$

- 8 G. Sheldrick, SHELX-76, System of Computing Programs, University of Cambridge (1976).
- I. M. Stewart, G. I. Kruger, H. I. Ammon, C. Dickinsor and S. R. Hall. 'X-Rav 72 . System of Prog sity of Maryland, Technical Report, TR-192.
- 10 T. N. Margulis and D. H. Templeton, Z. Kristallog., 117. 344 (1962).
- **H. Montgomery, R. V. Ch.** Acta Cryst., 20. 731 (1966).
- 12 M. G. B. Drew and J. D. Wilkins, J. Chem. Soc. Dalton, 2664 (1973);

M. Kapon and F. H. Herbstein, Nature, 249, 439 (1974);

Chim. Acta, 19, *N* I Notte, E van der H. Endre, G. J. H. J. (1976)

H. Endres, G. Jeromin and H. J. Keller, Z. Naturforsch., Teil B, 32, 1375 (1977);

M. J. Nolte, E. Singleton and E. van der Stok, Acta Cryst., B34, 1684 (1978);

- \overline{R} The M. Rossi, L. G. Marzilh and T. J. Kistemnacher, *Acta*
- *M Rossi I G Marzilli* Cryst., B34, 2030 (1978).
- 14 K. Toman, J. Honzl and J. Jécný, Acta Cryst., 18, 673 $(1965).$